The Simarine Pico Battery Monitor is actually much more than "just" a battery monitor. It has the ability to monitor multiple battery banks, current of multiple consumer devices, tanks, temperatures, inclinometer and barometer. Let's call it a SYSTEM MONITOR 🙂 It's an cutting edge product with an impressive smartphone-like-high-quality feel. While it's not essential to a working van electrical system, it's definitely a sweeeeeet upgrade for your van conversion if you don't mind the higher price tag. Here is everything to know about the Simarine Pico System Monitor!
Disclosure: This post contains affiliate links, which means that if you click a product link and buy anything from the merchant (Amazon, eBay, etc.) we will receive a commission fee. The price you pay remains the same, affiliate link or not.
1- In a Nutshell
1.1- Features
The Simarine Pico is completely customizable and expandable. To start off, you can use it as a battery monitor only:
Continue by adding any, or all, the following modules:
1.2- Components
In a nutshell, the Simarine Pico requires:
1.3- Models and Where to Buy
There are a few options here:
Simarine "Pico One" Package
It’s the “entry-level” package. You’ll be able to monitor:
- 1 battery bank (up to 300A current and voltage)
- 1 battery bank (voltage only)
- 2 Tanks (or 2 temperatures, or 1 tank and 1 temperature)
- Includes the "Pico-one" monitor, which cannot be expanded further to what's listed above.
Simarine Pico Standard Package
You’ll be able to monitor:
- 1 battery bank (up to 300A current and voltage)
- 1 battery bank (voltage only)
- 4 resistance inputs (tanks or thermometers)
- 3 voltage inputs (1 inclinometer or any voltage-type sensor)
- Includes the "Pico" monitor, which can be expanded later (see "customize your own")
Simarine Pico Blue Package
You’ll be able to monitor:
- Same as standard package
- Plus 4 consumers monitoring (current)
- Includes the "Pico" monitor, which can be expanded later (see "customize your own")
Customize your own Package
Take advantage of the Pico flexibility and create a package to suit your needs!
- Up to 6 battery banks
- 6 additional battery voltage
- Up to 14 tanks/temps
- Up to 20 consumers
- 1 Inclinometer
Don't forget
- Electrical wires, terminal rings, connectors, etc.
- Check out our Electrical System Guide to build your knowledge and to download our wiring diagram & tutorial!
We’re super excited to get you 5% OFF ANY SIMARINE PRODUCT!! Just head to Simarine.net and enter the code “FarOutRide” at checkout to get the discount 🙂
5% Discount on any Simarine Product!
(Europe and Australia are excluded from the code)
In-Depth Look
2- Battery Monitor
2.1- Features
- Up to 6 battery banks
- State Of Charge (%)
- Current (A)
- Voltage (V)
- Time until charged/discharged
2.2- Components
1- Sensors
No proper sensors are required to read the voltage and current. Just electrical wires and terminal rings (to connect to shunt / voltage input) will do!
2- Simarine Input Modules:
Just like for any battery monitor out there, a shunt is required to read the current:
- SC303: 300A max
- SC503: 500A max
2.3- Setup
- Name: You decide.
- Type: Lead Acid, AGM, Gel, LiFePO4.
- Voltmeter: Assign a voltage input from a Simarine module.
- Shunt: Assign a current input from a Simarine module.
- Capacity C/20: Battery capacity (Ah) if discharged in 20 hours.
- Capacity C/10: Battery capacity (Ah) if discharged in 10 hours.
- Capacity C/5: Battery capacity (Ah) if discharged in 5 hours.
- Temperature: Assign a temperature input from a Simarine module (optional).
3- Consumers
3.1- Features
- Up to 20 consumers
- Current (A)
3.2- Components
1- Sensors
No proper sensors are required to read the current. Just electrical wires and terminal rings (to connect to shunt) will do!
2- Simarine Input Modules:
A shunt is required to read the current. The following modules can read current inputs.
- SCQ25 or SCQ25T: 4 inputs of 25A max each (35A peak for 1 minute). Inputs can be merged for higher current capacity (2 inputs = 50A).
- SCQ50 4 inputs of 50A max each (60A peak for 1 minute).
- SC303: 1 input of 300A max (for inverter)
- SC503: 1 input of 500A max (for inverter)
3.3- Setup
- Name: You decide.
- Range: Max value for graphical representation on the Pico Monitor.
- Reverse: Use this to swap the current value +/- (instead of swapping the cables on the shunt...).
- Add current: If multiple shunts are used to monitor the current of a single battery bank (example: one shunt on each branch of batteries in parallel).
- Battery: Assign a battery if you want to display this consumer on the battery screen.
- Display separately: To display the consumer on a separate screen on the Pico. Up to 12 consumers. (setting not available in app)
- Display priority: To ordering consumers display on the screen.
4- Temperature Monitor
4.1- Features
- Up to 10 sensors
4.2- Components
1- Sensors
Temperature sensors are sold by Simarine on their website (1 or 5 meters length):
2- Simarine Input Modules:
Temperature sensors are connected with a JST input on the following modules:
- 1 input: SC303, SC503
- 4 inputs: ST107, SCQ25, SCQ25T, SCQ50
4.3- Setup
- Name: You decide.
- Type: NTC 10K (use this for Simarine sensors) or NTC 5K
- Sensor: Assign a temperature input from a Simarine module.
- Display priority: To ordering consumers display on the screen.
- Range Min: Min value for graphical representation on the Pico Monitor.
- Range Max: Max value for graphical representation on the Pico Monitor.
- Calibration: To offset (+ or -) the displayed temperature.
5- Tank Monitor
5.1- Features
- Up to 14 sensors
5.2- Components
1- Sensors
- Float Sensor: Must penetrate the tank. It uses a float to measure the input signal.
- Ultrasonic Sensor: Installed outside the tank. More expensive, has blind spot close to the sensor, must be installed away from the tank vertical walls, must be install either on top or bottom (depending on brand/model).
- Pressure Sensor: Installed with a "T" fitting at the bottom of the tank.
We went with float sensor type for simplicity of installation and $. We used KUS USA resistance-type sensors:
Make sure to select the right sensor length according to your tank depth! (leave one inch clearance at the bottom of the tank for proper functioning of the sensor)
2- Simarine Input Modules:
Tank sensors are connected to resistance-type input on the following modules:
- 1 input: SC303, SC503
- 4 inputs: ST107, SCQ25, SCQ25T, SCQ50
5.3- Setup
- Name: You decide.
- Type: Water / Fuel / Waste water.
- Sensor Type: Resistive / Voltage.
- Sensor: Assign a tank input from a Simarine module.
- Capacity: Max capacity of the tank.
- Calibration points: Before the Pico can display the tank level, at least two calibration point must be entered. More calibration points will enable PICO to show tank level more accurately. Added can be up to 11 calibration points. Set for each calibration point, the tank fill volume (liters or gallons) and a corresponding sensor value (resistance or voltage).
- Display priority: To ordering consumers display on the screen.
6- Inclinometer
6.1- Features
- Up to 2 sensors (Pitch & Roll)
6.2- Components
1- Sensors
For 2020, Simarine finally released their own inclinometer sensor (SDI01); no need to buy a third-party one anymore. That’s good news!
2- Simarine Input Modules:
The Simarine inclinometer (SDI01) has a SiCOM output.
6.3- Setup
- Name: Pitch / Roll.
- Style: Line / Caravan / Camper.
- Sensor: Assign a pitch/roll input from a Simarine module.
- Nonlinear: Exaggeration of the visually displayed angle. This is useful for small angles since it can be difficult to distinguish on which side we are pitching/rolling. The true angle (X.X degrees) is still displayed.
- Calibration: To set the zero point (use actual sensor value OR enter manually) and to set the Step (mV/degree).
- Display: Show/hide the inclinometer on the Pico screen.
- Reverse: If the inclinometer shows the inverse value for pitch or roll angle (e.g., left instead of right), you can enable this option to reverse the display.
7- Our System
First things first, let us introduce you to our self-built van:
OK, back to our topic. Here is what we monitor with the Simarine Pico:
House Battery
- Current
- Voltage
Van Battery
- Voltage
Consumers
- Solar
- 12V DC Loads
- 120V AC Loads
- Webasto
- Propex
- Maxxfan
- Lights
- Fridge
Temperatures
- House Battery
- Interior
- Exterior
- Fridge
- Water Pump
Tanks
- Fresh Water
- Grey Water
- Nature's Head Composting Toilet (liquid tank)
Inclinometer
- Pitch
- Roll
7.1- Installation Photos
Sensors
Temperature Sensors
There’s not much to say here… just install the temperature probe where you want to know the temperature!
(the blue sensors are Sensorpush wireless sensors. Read about them here)
Tanks Sensor
1- Nature's Head Composting Toilet Liquid Tank
For the Nature’s Head liquid tank, we used a 9.5″ length sensor:
3- Find the correct alignement of the gasket on the screw holes, then apply a bead of Silicone II around. Do not let silicone stick to the sensor's probe! So Just a small bead of Silicone...
Note: Silicone is normally not required with these sensors, but it’s an extra step we’re taking because the screws don’t have excellent grip into plastic)
6- We used these electrical quick connects for easy dumping of the tank. They're super easy to connect/disconnect (nice!), but they're not true crimp connectors; if you pull too hard on them, you might break the wire loose from the connector...
2- Grey Water (4 gallons Aqua-Tainer)
For the Aqua-Tainer, we used a 8.0″ length sensor:
3- Fresh Water (25 gallons)
Here we have a straight surface and quite thick wall, excellent!
We used a 15.0″ length sensor (but check with your own tank):
Simarine Modules
We won't win the cable-porn award, but our main electrical cabinet is super compact (space saver!) and that makes it very challenging to work in it...
SC501 Shunt:
(Note that the SC501 has since been replaced with the SC503, connections might differ slightly)
- House battery current
SC301 Shunt:
(Note that the SC301 has since been replaced with the SC303, connections might differ slightly)
- Inverter current (can be installed on positive or negative)
7.2- Wiring Diagram
Here is how we wired things. The inputs in the diagram below are not exactly as the photos above (for clarity), but the result is the same.
(Note that the SC501 and SC301 shunts have since been replaced with the SC503 and SC303, connections might differ slightly)
8- Our First Impressions
After some time using extensively the Simarine Pico system, we can say it delivers! Sweeeeeet!
8.1- The Pico Device
Build Quality
Simarine is doing very well in the hardware department… With an anodized aluminium casing and a Gorilla glass, the Pico has an “Apple-like” feel, a classy look and is a real pleasure to use. Because of that, we often find ourselves touching the screen to control it… Nope, it’s not touch-screen.
We build our van in 2016 and it’s the third monitor we’re testing. Battery monitors have come a long way!
2016:
2018:
2019:
User Interface
We think the user interface is stunning. In fact, it’s the first thing that caught our attention when we saw it first on a Norva van. The menus look clean, information is well displayed and the settings are easy to find. This thing is definitely an eye catcher and it will probably find its place in more and more in high-end vans and RV.
Only one complain here: the only available mode for the inclinometer is “line”, while on the app the Campervan mode makes it much easier to read:
Also, the inclinometer can only be calibrated within the iOS or Android app, not within the Pico device itself… not sure why, but hopefully it changes in the next firmware updates.
Monitoring Performances
The temperature readings are super close to our Sensorpush wireless sensor, nice! The battery SOC, the consumers, the tank levels seem accurate as well; so far so good!
For some reasons, the voltage and temperature readings was TOTALLY off when plugged into the SC501 or the SC301. If plugged into the SQ25T, no problem…
A disappointment is the inclinometer which seems all over the place; we just can’t trust it. But the problem is not with the Simarine Pico, it seems to be the cheap “third-party” inclinometer we chose… We totally avoided “cheap chinese” product so far in our van build, except for our radio and the inclinometer; in both cases the products have under-performed. We’ll be on the search for a proper inclinometer sensor soon enough!
8.2- The Smartphone App
The App is an excellent complement to the Pico device. It makes the initial setup of the Pico MUCH easier and faster than doing it from the Pico’s screen. The displayed menus are very similar than the Pico and the settings are presented in the same order, so it’s super easy to find everything.
The iOS app seems to works flawlessy, but we had a hard time figuring how to use the Android app (our phone just couldn’t establish communication with the Pico). The only way to make it work is to set the Pico in STA mode: instead of creating it’s own WiFi network (you read it right: the Pico communicates via WiFi not via Bluetooth), in STA mode the Pico join an existing router (in our case, our Verizon JetPack). Once setup this way, we could use the app on our Android phone.
8.3- Product Improvement Wishlist
Here is a nice comprehensive list for you, Simarine! 🙂
- We would LOVE if each consumers had history (i.e. daily total Ah consumption).
- A "screen off" button (i.e. short press of the enter button) would be nice (at night and when we leave the van in sketchy neighborhoods)
- The specification sheet of the thermometer probe says "minimum -20°C"... that's not cold enough for Canada!
Here is our workaround for the fact that there isn't a "screen off" button:
8.4- Victron Battery Monitor vs Simarine Pico Monitor
Which one should you choose?
We spent over a year testing the Victron battery monitor:
Here is our recommendation:
Get the Victron
- If looking for an excellent but affordable battery monitor that gets the job done.
- The smartphone app is awesome.
- It integrates seamlessly with other Victron products.
Get the Pico
- If looking for a SEXY, cutting edge battery monitor (Pico One package)
- If looking to monitor any of the following as well: tanks, temperatures, inclinometer (Pico Standard package, Blue package, or custom).
- As of now (2019), we think the Pico is above the rest in terms of look and functionality.
Hey!!
You guys rock!! We couldn’t have done our van build without you!
We have the pico, we can connect to AP WiFi. This is great locally at the van.
Is it possible to connect the pico to a jet pack so we can view the pico while away from the van. We want to monitor the temp of the van so we know our dogs are okay.
Thanks,
Andrew and Yelena
You can, using the “STA” connect mode (instead of AP); that being said, your phone will have to be connected to the Jetpack as well. In other words, you can’t monitor from anywhere. I’d recommend the Sensorpush if you want to monitor remotely from anywhere: https://faroutride.com/sensorpush-review/
cheers!
Hi!
Thanks a lot for making this webpage. It is helping me plan a lot, and I am trying to use your affiliate links whenever I can to support you.
I have a question about the 7.2- WIRING DIAGRAM. In the diagram, the things that come from the fusebox are connected to the SCQ25T module through the “IN” port, but in the pictures above I believe they are connected to the “OUT” ports?
Then a note; in the wiring-diagram-High-Power, the battery shunt shown if you choose Simarine is SC301. If you then choose to have 4 batteries it is a bit confusing as but as the shunt only goes to 300A. So do I understand it correctly that if your battery bank exceeds 300A you should go for the SC501 shunt? And how do you know which shunt to get for the inverter?
I love your write ups. So detailed and it soothes my ocd. Haha. Anyways, I have a 1990 vw Vanagon and I have a dual battery setup. I’m running a dometic fridge, diesel heater, air compressor (when needed) and a couple auxiliary lights. I have the battery installed but I’m looking for a monitor system that will show the charging for both my house and starter battery, the amps per hour that I’m burning, how long till my house and starter battery ate charged etc. would you recommend the Pico one? Please let me know. Thanks!!
The Victron BMV-712 would fit better for your needs I’d say, but it only has the ability to display the VOLTAGE of the starter battery (not the % and everything). But do you really need all that info for the starter battery anyway? If yes, then you might look at the PICO (with two shunts for two battery banks).
cheers
This is a great write up,After reading I have now installed the same system just curious how you came up with the 3 C ratings of 200 thanks
For Lithium batteries, the “C” is the same for all. So if you have 200Ah of Lithium, set all the “C” to 200.
So overall, would you say you’re pleased with the Simarine Pico Standard package and would choose to install that over the Victron Battery Monitor?
Personally, I love the high-class look of the Simarine and if it monitors more than the Victron monitor, it seems worth it.
By the way, I have been so grateful for all your tips on your site! You’re so thorough and I can tell you love the engineering side of the vanbuild process.
Antoine,
Super helpful instructions. I’m running short on Sicom cable. Tried a regular 4 wire phone line RJ11 after trimming the jack head to the right size. Also tried an RJ9 cable. It doesn’t recognize it even though it seems to snap into the slot perfectly. What exactly is this Sicom jack? Can I buy the cable locally at a Walmart/Home Depot?
Thanks!
Honestly I don’t know, it might be proprietary. You should contact Simarine customer support.
Good luck,
antoine
Hello,
Love the install and review.
Simarine do have a inclinometer which is the “Simarine SDI01”. It uses the SiCOM connections which is sweet as it is very easy to connect. Also its range is Measuring -30°~+30° which is small and therefore more accurate with a Resolution of < 0.001 °.
Here is the Australian retailer I use but I am sure it would be available there. https://www.safiery.com/two-axis-inclinometer-pitch-and-roll-sibus-interfa
Hope this helps,
Andrew.
Hello
If we buy the Simarine controller do we still need the Vitron digital multi controller and the Vitron MPPT 100 charge controller?
Thanks so much!
The Simarine role is to MONITOR what’s going on, and the Victron MPPT is the actual CHARGER; so you need both.
Not sure what you mean by the Multi controller?
Did you split the positive wire coming from your solar charge controller to connect it to two inputs and outputs on the SCQ25T? How did you do this if this is the method you used? Thanks!
Question: If your Inverter was actually a combo Inverter/Charger (for charging house batteries from shore power), would the SC301 Shunt, in the same location, measure 120V loads in Inverter mode but also measure input current into the house batteries in Charger mode?
Yes, your monitor would display INPUT (charge) – OUTPUT (load). So let’s say you charge at 60A and you draw 9A (computer or whatever), the monitor would display 51A.
Hope that makes sense!
antoine
Salut Antoine. Your site is awesome. Helped install Pico myself. Many thanks. Question, I notice an Auto Off feature in the menu on the Pico but there’s no explanation in the manual. I suppose it was added in a recent firmware update. You can set it for a certain amount of time but I’m unsure if the system continues to monitor battery usage when off. Do you know? As sleep only dims the screen, I’m hoping this feature make the system keep track of battery drain so I can use it to avoid having the screen on all the time, especially when our RV is not in use. Thanks for your help.
How many modules can be hooked up?
up to 6 battery banks,
6 additional battery voltages,
14 tank levels (for temperature monitoring)
20 consumer or power generation readings.
Go to this page and check “technical specifications”, it’s all listed: https://www.simarine.net/product/pico-battery-monitor/
cheers
You mention a limit of 300ah battery bank. So if I have 4 , 110 ah lithium batteries this will not work?
Hi Tony,
The limit is not 300Ah, it is: 300A. So it has nothing to do with your battery bank size, it’s actually the current. For example, a 3500W draw over 300A so that would be too much. If that’s an issue, you can go with these shunt instead of the “standard” ones: SC501 or SC502T (up to 500A).
So yeah, 4 x 110Ah lithium batteries will works just fine 🙂
Did you hook the solar charge controller into 2 of the 25A connections so it wouldn’t go over the 25A max? Was this easy to correct and combine in the app when setting up the system?
Yeah we did that; it’s fairly easy to setup. It’s explained in the manual 🙂
Is there any particular reason you went with a SC501 shunt for the House Batteries? Wouldn’t the 300A SC301 be enough?
Hi Antoine!
Great review. We’re considering the Pico for our build, but are wondering – is it possible to measure a Sterling 60A b2b input? (would that require another SC301 shunt since the SCQ25 only goes to 50A with 2 slots?).
Thanks,
Peter W.
Exactly, it can be done but a shunt would be required (such as the SC301)…
antoine
Hey! Love this system and planning to install on my next build. Wondering though, in looking at your comparison to the Victron system did you consider the color control GX modules? It’s obviously great that the Pico unit combines the display unit with the battery monitor so that it’s all in one spot, but the CCGX unit from Victron offers pretty similar plug and play functionality when it comes to additional monitoring inputs (tanks, temps, other batteries, etc.).
Really, in my mind, apples-to-apples comparison would be between a system built around the victron CCGX and a fully kitted-out Pico system. Would be interested to hear your thoughts there.
Great article though and super helpful in navigating the connectivity of each shunt module!
Hi Dennis,
I’ll be honest, I don’t really like the look of the GX… I think the Pico look more “classy” and high-end; that’s what I want to see in 2019 in my van! Sorry if you expected an in-depth analysis, but I haven’t look into it.
Cheers!
Antoine
Thanks Antoine! No worries, I definitely agree that the Pico is a much sexier monitor than the GX, was just wondering if you had looked into them at all.
Best,
Dennis
Are you planning to add propane level monitoring?
Love the system. Been watching it for about a year now hoping the price would come down and/or an API would be released to bring in data from my Xantrex & Kisae units onto a unified display.
It could be done quite easily if we had an underbody tank (using something like this: https://amzn.to/2xd3rKR), but since we have a 20lbs BBQ tank we would need that fancy sensor: https://www.safiery.com/lpg-tank-level-bottom-sensor-magnetic (220$).
So for the moment, the Mopeka sensor+app does the job: https://faroutride.com/propane-level-monitor/
Cheers
Awesome! If I read it right, could you measure the input current from each charging source (solar, acg, etc)? My experience with the victron was that in winter with low sun the monitor thought the battery was charged (based on the acg current profile) but it was actually just cloudy, and not much current from the solar. Could you input “100%” charged criteria for multiple charging sources?
The Simarine is different than the Victron: there is no synchronisation to 100% based on voltage/current conditions. It’s all dealt with by the “smart” algorithm… So far, it’s seems pretty accurate (especially with LiFePO4 I’m guessing, since there is no Peukert effect). (note: there is still the possibility to do a manual synchronisation; we’ve done it only once right after we finished with the installation and we knew the battery was full).
Does this allow, like the Victron, the ability to close a switch when some condition (like temperature) goes above/below a set value? I’d like to use a monitoring system to stop charging a battery if: 1) temperature too low, 2) temperature too high, 3) battery voltage too high
The temperature cutoff on the Victron is on the charger, not on the monitor. So we still retain that feature.
But still, there are alarms on the Simarine (tanks/voltage/temperature too high, too low) that when triggered, can open a relay. Check out the manual as I’m not 100% familiar with that.
But since we upgraded to BattleBorn batteries, we don’t have to deal with that because the BB batteries have built-in BMS that manages that: https://battlebornbatteries.com/programming-a-victron-smartsolar-charge-controller/
Hope that helps!
How did you get around the voltage inaccuracy with the shunt. I installed one and it is about .2 of a volt to low.
We get 0.07V difference between the Victron & the Simarine. Now the question is, which one is correct? We need to borrow a multimeter in order to find out!
Did you ever run an accuracy test between the Victron shunt and the Simarine?
Can this be used to monitor a system with the Victron 12v/5000w Quattro inverter/charger using, 60A Dc-to-Dc (using dual 30A DC to DC Orion chargers), 1000W solar array and 800Ah battery array?
Also, will you be able to use the lynx 1000 shunt with these instead of the simarine shunt?
Thanks!
I believe you could, but that’s quite the system you got there, so you’ll have to select modules (e.g. SC503 shunt, etc) that are within the range of your system. So go through the technical specifications of each module, you’ll find them on their respective web page on the Simarine website: https://simarine.net/products/
The Victron Lynx could be use, yes.
With the components you mentioned, your wiring diagram will obviously be different that ours 🙂
Regards, antoine